GE8151 Python Anna University Syllabus Regulation 17 (Sem-1)


Anna University Syllabus Regulation 17 (Sem-1)

GE8151                      PROBLEM SOLVING AND PYTHON PROGRAMMING            L T P C          3  0 0 3


 To know the basics of algorithmic problem solving
 To read and write simple Python programs.
 To develop Python programs with conditionals and loops.
 To define Python functions and call them.
 To use Python data structures –- lists, tuples, dictionaries.
 To do input/output with files in Python.

UNIT I               ALGORITHMIC PROBLEM SOLVING                                                              9  Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II  DATA, EXPRESSIONS, STATEMENTS                                                                           9 Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions,  statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments;  Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III   CONTROL FLOW, FUNCTIONS                                                                                  9  Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings:  string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES                                                                                  9 Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES                                                                                       9 Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

Upon completion of the course, students will be able to
 Develop algorithmic solutions to simple computational problems
 Read, write, execute by hand simple Python programs.
 Structure simple Python programs for solving problems.
 Decompose a Python program into functions.
 Represent compound data using Python  lists, tuples, dictionaries.
 Read and write data from/to files in Python Programs.

1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist‘‘,  2nd edition, Updated for Python 3, Shroff/O‘Reilly Publishers, 2016  ( 2. Guido van Rossum and Fred L. Drake Jr, ―An Introduction to Python – Revised and updated for Python
3.2, Network Theory Ltd., 2011.

1. John V Guttag, ―Introduction to Computation and Programming Using Python‘‘, Revised and expanded Edition, MIT Press , 2013
2. Robert Sedgewick, Kevin Wayne, Robert Dondero, ―Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
3. Timothy A. Budd, ―Exploring Python‖, Mc-Graw Hill Education (India) Private Ltd.,, 2015.
4. Kenneth A. Lambert,  ―Fundamentals of Python: First Programs‖, CENGAGE Learning, 2012.
5. Charles Dierbach, ―Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
6. Paul Gries, Jennifer Campbell and Jason Montojo, ―Practical Programming: An Introduction to Computer Science using Python 3‖, Second edition, Pragmatic Programmers, LLC, 2013

Click Here to Download Anna University Syllabus

Anna University Syllabus Regulation 17 (Sem-1) English

MG8591 Principles Of Management Syllabus Regulation 2017 Anna University

Anna University Syllabus Regulation 17 (Sem-1)Physics-I


Anna University Syllabus Regulation 17 (Sem-1)Chemistry-I

Do You want International Scholarship? To Know more about the scholarship : Click Here

Are you a fresher and looking for Job? To know more about the Job Openings: Click Here

Click to Download Other ECE Materials: CLICK HERE

Click to Download Other CSE Materials: CLICK HERE

Click to Download MECH Materials: CLICK HERE